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ON THE METHOD OF GREEN'S FUNCTION IN
THE THERMOELASTIC THEORY OF SHALLOW SHELLS

By

R, P, Nordgren

Abstract

The metMod of Green's function is applied to the quasi-static
thermoelastic theory of shallow shells with heat conduction equations
included. Solution formulas are derived for middle-surface displace-
ments and stress and temperature resultants in terms of initial and
edge temperatures, Internal heat sources, amblent temperatures at the
upper and lower surfaces, and surface tractlons. Equations are given
for the Green's functlons appearing in the solution formulas, Exten-
slon to more general shell theory is discussed., By way of example,
the method 1s applied to thermoelastic problems for two classes of
shallow shells, Also, the effect of transverse shear deformation is

examined with reference to a shallow spherical shell,
1. INTRODUCTION

This paper applies the method of Green's function to quasi-static
thermoelastic problems in the theory of shallow shells, Thermoelastic
equations for shallow shells follow from the original work of Marguerre
(1938)* upon addition of the effect of thermal expansion., The two temper-
ature resultants appearing in these equatione are governed by two-dimen-
sional heat conduction equations derived by Bolotin (1960) for thin shells.
For flat plates Bolotin's equations reduce to those of Marguerre (1935)

* The nonlinear terms contained in Marguerre's equations will not be
included here.




and for shallow shells they are independent of the form of the shell middle
sur face,

Employing the indicated equations, solution formulas are derived which
express the middle-surface displacements and the stress and temperature resul-
tants in terms of the initial temperature, edge temperature, heat sources
within the shell, and ambient temperatures at the upper and lower surfaces,
The two sets of Green's functions in these integral solutlon formulas are
shown to satisfy the combined thermoelastic equations with the two resultant
heat-supply terms replaced by d-functions. A related solution formula for
shallow shells under surface and edge traction is also obtained, together
with equations for the Green's functions appearing in it,

The solution formulas obtained extend immediately to a simplified thepry
of shells (sometimes referred to as the "technical' theory of shells) pre-
sented, e.g., by Green and Zerma (195L). Extension to more general shell
theory is possible and is discussed. The method of derivation of the thermo-
elastic solution formulas is applicable to other special theories of elasti-
city as well as to the three-dimensional theory. 1In this connection it
should be recalled that Parkus (1959, p. 13) gives a solution formula for
stress in quasi~-static thermoelastic problems on the basis of analogy and an
intuitive argument. Also, integral formulas for scveral thermoelastic prob-
lems with unspecified temperature distributioun are derived by Goodier (1958)
and Goodier and Nevill (1961), Singular solutions for shallow spherical and
cylindrical shells with concentrated temperature resultants are given by
Fllgge and Conrad (1950, 1958).**

The solution formulas derived here are applied to thermoelastic prob-
lems for two classes of shallow shells, namely, unlimited shallow shells
with quadratic middle surfaces and rectangular shallow shells with simply
supported edges parallel to the principal axis of quadratic middle surfaces,
With the aid of a method of spectral representation established by Friedman
(1956), the thermoelastic Green's functions are obtained for the former class
in the form of a Fourler serles af Hankel transform integrals and for the

latter :lass in the form of convergent double Fourier series. Both representations

**Previously, one of these singular solutions for a shallow c¢ylindrical
shell was proposed by Rabotnov (1946) as the solution for a concen~
trated normal force. However, an algebralc mistake occurred and, as
shown by FlHgge and Conrad (1958), the concentrated force solution

cannot be represented by a singularity of this type.
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appear suited to numerical evaluation. For three members of the class of

unlimited shallow shells, the Green's function is evaluated at the source point

as a function of time in terms of tabulated functions and comparilson is made

with the dynamic thermoelastic Green's functions for bending of a flat plate.

An example of edge heating is studied for the class of rectangular shallow shells.
In the last section, the effect of transverse shear deformation is

examined with reference to an unlimited shallow spherical shell (parabaloid

of revolution) under specified temperature field and normal surface traction,

A quasi-static solution is obtained by the method of Green's function with

use of the extended definition of the Laplacian operator following Friedman

(1956). The character of the fundamental singularities is compared with that

of previous solutions by Reissner (1946) and by Fllgge and Conrad (1956) according

to classical theory, which neglects the effect of transverse shear deformationm.
2. QUASI-STATIC THERMOELASTIC THEORY OF SHELLS

2.1 A Solution Formula for Heat Conduction, The two-dimensional heat con-

duction equations for thin shells derived recently by Bolotin (1960)
from a general variational principle for three-dimensional 1isotropic
(uncoupled) heat conduction with linear heat transfer at the boundary

may be written as

1 39N
2 - 0 - =9IN . .
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In (2.1) the Laplacian is ©° = aaB vapb , where the covarilant derivative
operator V  refers to a curvilinear coordinate system © (o = 1, 2) on the middle
surface of the shell with metric aaﬁ and conjugate metric aaﬁ, the summation
convention being understood. The thickness of the shell is denoted by h and x®
is the coordinate normal to the middle surface. The temperature resultants ON
and GM are expressed in (2.2) as integrals of the temperature T (above a fixed
reference temperature), and the derivation by Bolotin (1960) is based on the
assumption

T = GN(xa) + x%0,(7). (2.3)

The heat inputs QM and G, arise either from internal heat sources of rate Q

9
per umnit time per unit vglume or from heat flux across the upper and lower sur-
faces of the shell where the ambient temperatures ara T+ and T_, respectively.
The surface conductance H, thermal conductivity K, specific heat c, and mass
density p are assumed independent of temperature as well as coordinates. On the
boundary curve C of the shell middle surface the temperature resultants may be

specified, i.e.,
6 =1 6 =18 on C (2.4)

which is a special case of the linear heat transfer edge conditions given by

Bolotin (1960). 1In addition, 6, and 6, must satisfy the initial conditions

N M
a of M Q of &
lim 9N(x ,t) = GN(x ), lim GM(x ,t) = GM(x ), (2.5)
t o0 t 50

where T° = 9; + xq9§ is the initial temperature of the shell.

Since the heat conduction equations (2.1), (2.4), and (2,5) are of the
same form for GN and QM’ we need only discuss solutions for GN ; solutions for
9M then follow merely by replacing the subscript N by M. We shall use the li{near

vector space of all functions € such that

N
g 2
[ dt[ 6 ds < & (2.6)
\O \ R
and the scalar product of two functions 9N and 9& in this space is defined as
fw
dt[ 6.6 ds, (2.7)
0 Jy NN

where dS denotes the element of surface area on the shell middle surface,

L




Equation (2.1) contains the operator

L =v2 - TI (2.8‘)‘

-1
N K

P

N

whose domain will be the set of all functions GN in the vector space such that
) /aﬁxbx and BGN/Bt are plecewise continuous and of integrable square and
such that 6, satisfies the zero initial condition 1im ON = 0 and the homo-

N t-so0

geneous boundary condition ON = 0 on C. With the aid of Green's

theorem for surfaces, we may establish the identity

=]
»* ¥* . %
- 6170 -
Ldt‘/; (eNLNeN NLN N) ds

€0
*
= dt o> ( 6.3 -~ 9 - 6v.6) ds (2.9)
N'a N
Y0 ~C
]_ *
- 6 ox . 6.6
K‘ lim NN lim N ds,
R
t 50 t o>

where n is the normal to C and

* 13
Ly = \vial g * E'g- (2.10)
is the operator adjoint to LN whose domain 1s the same as that of L N’ except

that instead of a zero initial condition, lim 9N = 0. Thus, the right -hand

t oo
* *
side of (2.10) vanishes when 9N and 9N are in the domains of Ly and Ly,
respectively., The definition of LN may be extended to functions ea not in the

domain of LN by letting

08 o0
*
1 1
J; dt[ 0,1, 63dS = ‘/o dr.A opL. 0, ds, (2.11)

where LN6§ may be a symbolic function.

We shall show that the Green's function for LN is the actual or symbolic
function GN(x,t;x',t') which satisfies

GN(x,t;x’,t') = - 8(x - x') &t -¢t'), (2.12a)
GN(x,t;x‘,t') =0 ife<t', (2.12b)
GN(x,t;x',t') =0, x on C , (2.12¢)

where 8(x - x') is the. two-dimensional &-function and 8(t - t') the one-

dimensional ®=-function.




Replacement of t by -t in (2,12) results in

*_ %

LNGN(x,t;x”,t") = - d(x-x")8(t-t") (2.13a)
G;(x,t;x",t") =0 iftzt" (2.13b)
*
GN(x,t;x",t") =0, xongC, (2.13c)
where
Gyl E3%, €)= Gy(x, -t5x", £ (2.14)

*
can be shown to be the Green's function for the adjoint operator LN. Identi-

* *
fication of 9N with GN(x,t;x',t') and 6N with GN(x,t;x",t") in (2.9) leads to
the relation

*

e, en), (2.15)

GN(x",t”;x',t') =G

while identification of 9& with G;(x,t;x',t') and use of (2.15) results in
the following solution formula for GN in terms of its initial values, boundary
values, and QN:

t n
o } = F 1 P e '
N(x,t, \jo dt ‘/R' GN(x,t,x ,t) QN(x ,t')ds

t
- /p dt! /\' na(x')vaGN(x,t;x',t')GN(x',t')ds' (2.16)
Y0 4 C
+f. Gy(x, t3x',0) eN(x',o)ds'.
A formula for GM follows by replacing subscript N by M in (2.16).

2.2 A Solution Formula for Shallow Shells. We recall that the stress differ-

ential equations of equilibrium for shallow shells may be written as

vﬁnas +p% =0, (2.17a)
B o _ .

Vv B W +y,7+p =0, (2.17b)

vBMO‘B - =o, (2.17¢)

where ﬁas, a, }{ﬁ{ p(x and p are the stress resultants, shear stress resultants,

stress couple resultants, tangential surface tractions, and normal surface
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traction, respectively; Z is the distance of the shell middle surface from a
reference plane, and the covariant differentiation v& now refers to a curvi-
linear coordinate system x in the reference plane, The strains 7QB and changes
in curvature Ry of the middle surface of the shallow shell are given by

=V ‘1 + V&v

27@3 5 8" 2V, VB, (2.18a)

B

= - g .18
Kop vavﬁw, (2.18b)
where vy, and w are the tangential and normal displacements of the middle surface

*
of the shell. The constitutive equations for isotropic homogenecus shallow
shells, with the effect of thermal expansion included and the effect of transverse

shear deformation neglected, take the form

NP = LM ™y T Z%T:) o™ oty (2.192)
h2 ap\ Eh3 o
MaB = ?)-A PAT K)\T] - Tm‘) a BCdeM, (2-19b)
where
roo. .
A Eh 0y (L) (g aanaﬁx)] (2.20)

and Young's modulus E, Poisson's ratioy and the coefficient of linear thermal
expansion ¢ are assumed independent of temperature as well as coordinates.

Upon substitution of (2.18) and (2.19) into {2.17) we obtain the relation

o

a _ hZ apan . _En° o, .

and the displacement equations of equilibrium

CXB}\.T] - _ ' OLB 0 (04 =
A [vnvﬁvk VB(WNVT\Z)] o'a va y+tp 0, (2.22a)
- 2. 4 GpAAT . .

DV + vaszA [Vn"x vxvnaw :\ (2.22b)

* Marguerre (1938) and Green and Zerna (1954) employ displacements normal and
parallel to the reference plame (axial and longitudinal displacements) which

are related to the normal and tangential displacements w and v_ used here and in
other works by w and Vy T V&Zw, respectively, to within the aﬁ%roximations in-

herent in the theory of shallow shells. Also, the second fundamental form of
the shell middle surface has the coefficient ha = vy Z to within the accuracy
of shallow shell theory. B P




hZ

- ' 2 2 = .
a' (v zeN + 5V GM) 4+ p =0, (2.22b)
where
EhS o = B
= T2(1-v%) {1

With the aid of (2.17) and(2.18) and the divergence theorem, it is easy to

establish the relation

[ Naﬁyaﬁ + M8 6)ds -\/I; (pava + pw)ds + I, (2.23)

where

1 —\/ﬁ (Naﬁ - V w4+ Q w)n ds, (2.24)

and n, is now the normal to the curve C bounding the region R occupied by the
projection of the shell middle surface onto the plane of the coordinates fu. In
the classical theory of shallow shells, since the effect of transverse shear de~
formation is neglected, the line integral in (2.24) should be written in an
alternate form to reflect the fact that only four boundary conditions may be
prescribed on C. Thus, following Green and Zerna (1554), we write the components

of the couple resultant on C for directions normal and tangential to C as

Hy = Masrbnﬁ, H, = eaxMaB’-‘a“X , (2.25)

respectively, and for future convenience we do the same for the components

of stress resultant and tangential displacement, {.e.,

= OB = Bn o
NN N nanB N NT Eaxﬂz w}n
2.26
Vy =V nB Ve = Eﬁh v ( )
N gt T ‘5\ g’
where GBX and €@V are tensors of the €-systems., Denoting the derivatives
along the normal to C by 3/dn and d/ds, respectively, and defining the perhaps
symbolic derivative*# %%I through
QHT e o ol
fcas wds fcn”’s s, (2.27)

¥% See Friedman (1956), pp. 1L0-1L2.




(2.24) becomes

I =k/n [NNVN - Npve, - Hy %% + Vw] ds, (2.28)
C
where
e OHT
V=0n +5 (2.29)

may be interpreted as the total shear resultant on C. If HT has a jump
discontinuity of magnitude AH, at & = s', then by (2.27) and (2.29)

a aOH ol
V=0, + =5 +AHT6(s s'), (2.30)
where %i denotes differentiation in the ordinary (not symbolic) sense. The
last term in (2.3%0) represents a concentrated load which is a well-known
result in classical shell (and plate) theory. Appropriate boundary conditions
for shallow shells are apparent from (2.28) and may be listed as

N* *
either NN = Ny or A

eith N, N* T v, v*

er = 0 =
T T T T
e ¥ B (D) (2.31)
either Hy N er 3 T ‘an’
*
either V =V or W= w*,

on C, where the starred quantitlies are boundary values. In a later section

we shall consider an example in which
N, = N = K - 0 c (2.32)
Ns: N’ HN—-HN , VT—W= N on N .3

and these boundary conditions will be used to illustrate the method of the
present section. By (2.19), (2.23), and (2.28), the reciprocity theorem
(Green's formula) for shallow shells is

P+ plw (84N + LY M) lds
2 a Na T 13N

W
1 - N! - gt EN 1
+fc [NNVN Npvy = Hy S5+ V w]ds

(2.33)

+
o(,\,s\ﬁ

2
[ﬁuv& + pw' + a'(awy'; + by n'x)lds
Qu!
| - | . - 1
[NNVN NTVT HN 3n + Vw'|ds ,

9




where primed &nd unprimed variables denote any two solutions of the shallow
shell equations. The thermoelastic reciprocity theorem (2.33) may also be
reached from the isothermal reciprocity theorem [GM = QN = 0 in (2.33)] by
means of an analogy between the isothermal equations and the thermoelastic

equations of shallow shells.t By (2.19) to (2.22), the analogy may be written

A
Po = P - '(vPRO + gvzem)
NP = P +a'a°“39M , (2.3L)
ﬁ?ﬁ Y %gcz'éxaeu s
Qs = ¢ +h—2a'aa’3v 6, s
12 B M

where subscript zero denotes a variable in the isothermal equations. As an
aid in discussing solutions of (2.22) it is convenient to denote components

of the middle surface displacement vector by U, {i = 1, 2, 3) where

i

U =v_ , (o = 1,2), Us = w, (2.35)"

and consider the linear vector space of all Ui such that

f (P, vy + v2)es <o (2.36)
R

The scalar product of two displacement vectors Ui and U£ in this vector

space is defined as

f (%Pl + s (2.37)
R

*rhe analogy is similar to that given by Duhamel (1838) for three-dimensional
thermoelasticity, and the Betti reciprocity theorem has been extended to
thermoelasticity with the aid of this analogy by Goodier (1958).

++The only tensor properties of U, are those of its components v_ and w

which are a vector and scalar, reSpectively, with reference to é%ansformations
of coordinates in the reference plane,

10




In (2.22) there appears the operator £ gefined by

£gm - Aaﬁkn 7.9

B'n ’
2 . -a%BNN
fve (vﬁv)\vnz + %98 VB).
(2.38)
3\ - QAT
L A AT

1:.?3 = -DVRJ2 - aﬁ}‘“vavazg\v z

whose domain‘will be the set of all Ui in the vector space such that second
partial derivatives of qz and fourth partial derivatives of Us are plecewise
continuous and of integrable square and such that Ui meets homogeneous boundary
conditions on C of the form (2,32) with N} = Ht = 0. ‘rhen (2.22) may be written
as

Li'hj -et st oo, (2.39)

where
P’ =p7, P2 = p, & = oz'aanBe ,
(2.40)

h2
3 = ! (20 A o2
® a(va+12vM).

By (2.39), the reciprocity theorem {2.33) becomes

fR ||.(-£ﬁ03 + @'i) u, + ni(e')Ui]dS + 1(Uu',U)

. (2.41)
= f f(-xﬁu + ei)u' + TLi(H')U. ds + 1(u,u"),
R L ] i lJ
where nF(e) is the operator defined by
o g O
16) = a'6a 5VB ,
. (2.42)
' b7
n3(6) = «a'(6 %2 + ToPMVe)
and
(U',V) j; [NI:IVN = Npvo - HI:‘%%+ V'ulis . (2.43)

Setting ON = OM = 0 in (2.41), Qijis seen to be self-adjoint and may be

11
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extended to functions Ui not 1n its domain by the definition

' A = 1
fn v Moy ds A Uy J:"Juj ds. (2. 44)

We shall show that the Green's function for £}jis the perhaps symbolic

(tensorial) function G, ,(x;x'), which satisfies the equation

1]

ﬁ-lejk(x;x') ="5i 3(x-x') , (2.15)

and homogeneous boundary conditions* corresponding to (2.32) which with the
aid of (2.19) and (2.26) may be written as

- QBN . . . -
Ny, =1n nla A R; Yy ai(x,x') qu(x,x')vxvnzl 0,
- - he ,ap\ - . -
He, s 1 A vv Gsy (x3%') = 0, (2,46)
v, =0 6 (x;x') =0 Gy, (x3x*) =0
Ti ai 3 ’ "}.i H 3

for x on C, In (2.h41), identification of U, with ij (x;x') and Uj with

Gjl(x;x") followed by application of (2.45) and (2.46) vields the relation

Gy (x'3x) =6, (=" x") . (2.47)

Similarly, identification of U} with ij(x;x') in (2.41) and application of
(2.32), (2.39), (2.45), (2.46), and (2.47) results in

Ui(x) f id Sx;x') Pj(x ) +th Cl(x x')] ds!'
(2.&8)**
f[nx)GiB(xx)N(x)-g-, (xx) BA(x)] ds.

*It should be noted that under some boundary conditions in the original problem,
the boundary conditions on the Green's function will not be homogeneous. For
example, if N, and N are prescribed on C in the original problem, corresponding
homogeneous boundary conditions on the Green's function would not be possible in
view of over-all equilibrium requirements. In such cases the Green's function
must satisfy inhomogeneous boundary conditions which may conwveniently be taken
in a form similar to rigid body displacements as done for a flat plate by Berg-
man and Schiffer (1953, p. 239).

*k !
The primed operators act on the x % variables of the Green's function,

12




The solution formula (2.L48) expresses the displacements in terms of the surface
and edge tractions and the temperature resultant field, In the absence of sur-

face and edge tractions (2.L48) may be written as
0 = [0 (s o () + B (et ()] a8, (2.19)

where by (2.42)

TJIE (x;x")

W (xx")

a' [P (x')vB' Gi}\(x;x') -y'22 (x") Gia(x;x')] ,
(2.50)

- Th%a‘v‘2 Gig(x;x‘) .

By manipulation of (2.45) it is easy to show that 'ﬁl: (x;x') satisfies (2.22)

with GN = 5(x-x') and 9}4 = pa =p=0, il.e.,

ol aaBVﬁ 5(x-x'),

o ﬁ? {x;x')
(2.51a)

£3j ﬁl; (x3x%')

o 722 8(x-x'),

while O (x:x') satisfies (2.22) with GM = 8(x-x') and GN = pa =0, i.e.,

i
JZaj'l‘f? (x;x'")

L'ﬂj’l‘fg{ (x;x')

it

0,
(2.51b)

h2
E a' v2 8(x-x').

Further, by (2..46), 'LTI;_I satisfies the homogeneous boundary conditions

~ ~N
BAO‘&‘n (VKUN(x;x') - Ur3 (x3x") vxvna ) = 0,

aphn
nanBA vxvn

naﬁg (x;x') = 1T§ (x;x') = 0, X on C,

n.n
[0

.o, (2.52)
3

and identical boundary conditions are met by 'iftf . The stress and couple
resultants may now be obtained from (2.19) and (2.48) or(2.49).

2.3 A Sclution Formula for Combined Thermoelastic Problems of Shallow Shells.

The solution formula (2.16) for heat conduction and the elastostatic solution
formula (2.49) may Le combined and after interchange of the order of

integration written as

~13-




T T T T T T T T e T T T T T T T T T R e e e T e

t
Ui(x,t) =‘/;) dt'j;' \i&? (x,t3xit") QN(x‘,t')
t
+ M( ,e3x',t') Q(x',t') | ds' - dt!
&i o " ] fo (2.53)

f na(x') [v&&? (x,t3x',t") eﬁ(x‘,t') +V&&?(x,t;x',t')9ﬁ‘(x',t')j\ ds'
c .

+f l['1.1\1'(:(&;::',0) OR(x') +&1~11 (x,t3x',0) 9;,(#)] as',
Rl .
where
312 (x,t;x",t") = /’\ ’[}'N (X;x‘) G (x',t;x",t") ds', (2'5,*)
Jp @ N
and similarly forg}; . The truth of (2.53) is easily verified, since by

(2.51a) and (2.5L4)

g, N saett 1) 4 oyt ap ) Tl '
L‘ijj (x,t;%",t") = Q' & A (x,t5%",t"),
£3j9§] (x,t;x",t") = a! v2 z GN (X, t;x",t”),
(2.55)
ﬁxj&}; (x,t3x",t") = 0 ,

[

hZ
= ! V2 GM (x,t;x“,t”),

££3_1&§1 (x, t3x", t") 12

and then by (2.53) and (2.16)

£ Uj (x,t) ot aP vﬁ 9 (x,t),

N

o l-VE g 0 (x;t) +h—2v2 8 (x,t)]

b
L7y (x,1) N 12 M

which are precisely the field equations (2.39) with pl - 0. By (2.54),

&g and&? satisfy boundary conditions of the form (2.52). 'I‘hus,_ﬁ'_lgI and

&j play the role of Green's function for combined quasi-static thermo-
elastic problems in the theory of shallow shells and (2.53) determines the
middle surface displacement in terms of the surface or internal heating,

edge temperature, and initial temperature. By (2.16), (2.19), and (2.53) the

stress resultants are




nt

NP (x,t) =~/o dt'f' [Nﬁﬁ (x,t3x',t") Q (x',t")

+ Nz,e (x,t3%',t") Qy (x',t')_y ds!

[ Tae [ g P e, 00, (00, e)

P (2.57)
+v) LERITIND 9M(x‘,t')] ds'
+va (568 (x,ex1,0) 05 (x1)
+ @B (x,t3%',0) 9;1(14')} ds' ,
where

B, 00T, 2 (0] -0 s, e,

and similarly for Nﬁﬁ. By (2.58), N%B is just the resultant obtained

directly from the Green's functions by an equation of the form (2,19a).
Similar expressions may be obtained for the couple resultants and shear stress
resultants, The question of existence of solution Ui for specified edge tem-
perature, initial temperature, and heating will not be considered here,
although some restrictions on the region R and on the specified functions

certainly will be necessary,

Remarks on Extension of the Results to General Theory of Shells. The method

developed in the foregoing may also be applied in the more general theory of
shells which are not necessarily shallow and in which the effect of transverse
shear deformation may also be included. The results nbtained for shallow
shells apply immediately to the simplified theory (sometimes referred to as
the "technical' theory) of shells, presented, e.g., by Green and Zerna (195L4),
the only change being tHat & are regarded as mliddle surface coordinates
rather than coordinates in a referencc plane. With only slight modification,
the formulas of this section also extend to the version of shell theory

commonly known as Love's first approximation, + in which the constitutive

+There are at least three different versions of Love's approximation in the
literature. We refer here to the one given in vectorial form by Reissner (194l).
A full discussion and additional refergpces are given by Naghdi (1962),
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equations may be written as

pa _ 0B - - v'a%Pe

N = A (VXVn bhnw) a'arly
2 h2 (2‘59)

pa _ _ b opwn o N b 0By
where the covariant differentiation now refers to & curvilinear coordinate
system on the shell middle surface and 29BN 4 given by (2.20) with a8
now being the conjugate metric for the middle surface coordinate system,
When (2.59) is combined with the general equilibrium equations for shells
we have

apAn . hZ o, 0B\
A vb(vnvk bxnw) + 15 bp A vb V&Vh W

Y ooyt af 8 - h_g. ap 2 -
+ Vk(bn Vy)] o [a vb N~ 15 P vb | +p 0,
. (2.60)
. k& opnq y
15 vavﬁ [v&vnw + 9, (bn vy)]

2
(v_v. 1

aﬁ?‘-n - - 1 h 20 (04 8 -
+ A by " hknw) [0 [12 vy + ba N|TP=0

p

which are of the form (2.39) but with the operator ¥ and the temperature
term 8" no longer given by (2,38) and (2.40). Also, it is easily verified
that the form (2.41) remains unchanged. Since the heat conduction equations
(2.1) with solution formula (2.16) are valid to the same degree of approxi-
mation as (2.59), it follows that the result (2.53) holds alao for Love's
first approximation. However, the Green's functionéay (x,t3x',t') will now
be a solution of (2.60) operated on by L, with LN9N = oB(x-x') 5(t-t'),

QM =p= ﬁi = 0 and under appropriate boundary conditions., A similar
statement holds foréi? and also for Gljin (2.48). In connection with

Love's first approximation, it may be recalled that integral formulas for
displacements and their derivatives for the isothermal case are given by
Naghdi (1960); these formulas are contained in (2.L8) and its derivatives.
It should be remembered, however, that certain inconsistencies are present
in the constitutive equations (2.59) in that NP and MP% do not vanish
identically under rigid body displacement, nor do they satisfy the equation
of moment equilibrium about a normal to the shell middle surface, except

for spherical shells.4+ While the degree of error is of the order % (R being
rhe inconsistencies mentioned are also present in the constitutive cquations
of shallow shell thcory, although they are not considered serious in view
of the assumption of shallowness.
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3.1

the minimum principal radius of curvature), and % <<11is a basic postulate
of thin shell theory, nevertheless difficulties have been encountered in some
problems and at least on theoretical grounds improved comstitutive equations
are desirable, To obtain improved theories, additional higher order geo-
metrical terms have been retained in numerous derivations of constitutive
equations and the (often) equally important effect of transverse shear de-
formation has sometimes also been included., A more complete discussion and
a detailed comparison of various constitutive. equations is given by Naghdi
(1962). When more exact constitutive equations are applied to thermoelastic
problems of shells, the use of heat conduction equations of corresponding
accuracy seems desirable. Thus, the heat conduction equations for thin
shells derived by Bolotin (1960) could be improved by retaining geometrical
quantities of higher order in h/R, in which case it may also be necessary

to modify the assumption (2.3). Further, the temperature resultants 6 and

N
6 may not enter the constitutive equations in such a simple manner as in

(2.59).* While additional effort may be required to extend the present
method to thermoelastic problems in improved theory of shells, the main

ideas of the Green's function approach will still apply provided a recipro-
city (Green's) formula is available in simple form, as is the case for a
system of improved constitutive equations given by Naghdi (1962). In fact,
improved equations due to Fliigge for circular cylindrical shells are employed
by Goodier and Nevill (1961) to obtain formulas somewhat analagous to (2.49),
and they also derive similar formulas for various specific problems in theories
of thin bars, thin plates, membrane shells, and three-dimensional elasticity.
In these as well as other problems, it should be possible to combine the
integral formulas for displacements in terms of the temperature field with
integral formulas for solution of appropriate heat conduction equations,
thereby obtaining formulas for displacements in the combined thermoelastic

problem as in the foregoing treatment for shallow shells.

A. APPLICATION OF THE QUASI-STATIC THEORY:
THERMOELASTIC GREEN'S FUNCTIONS FOR
TWO CLASSES OF SHALLOW SHELLS

A Clasgss of Unlimited Shallow Shells. First we shall obtain the Green's

functions GN and GM for temperature resultants in an unlimited shallow shell,

-

*Note, however, that the 6_ and QM terms in (2.59) do meet the equation of

N
moment equilibrium about a normal to the middle surface.
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These Green's functions are independent of the form of the middle surface,
since & does not enter (2.12). Although GN and GM could be obtained from

the known Green's function for the two-dimensional heat conduction equation by
a simple transformation, fur illustrative purposes they are derived hare
following the method established by Friedman (1956, p.293) since this same
method will be applied later to obtain the thermoelastic Green's functions
&lf and&}i‘ . Thus, we may write (2.'123) 8s

Gy (g t3x',t') = > f 1 T3 8x -~ x') B (t -t'), (3.1)
<%_ T Tk at>

and interpret the result with the aid of appropriate spectral represen-
tations for the Laplacian (in the entire plane) and é% (on 0 2t 5w with

*x%
zero initial condition), namely

8(x - x') = Eiz JF JF dhalam) tealxe=xd) 4y qe, (3.2)
and
a + iw '
5(:-t0)=§i;/;-iw zs(tt)ds ) (3.3)

respectively, where x, and x, are rectangular Cartesian cooxrdinates. By
(%3.1) to (3.3) we have

w no pa + 1o s(t-t') 1e.(x,-x) 1E(%o-x))
GN(x,t;x',t')=g§t;I f f £ gt h vy TR P dedr, ded,
R R R LT I

which, upon introducing

1 ® [ 2 2
5+ K(ng + £ + £3) ”j; exp| - ts - tk(ny + 61 + ¢2) ] e,  (3.5)

£% = (x-x{)% + (% - x2)%,

after some elementary manipulations, becomes
2

1 .-
el 1Y ——— ¢t - !>
GN(X,t,x € ) l-l-y[(t't') exp( l{K(t't') KnN (t t )] sy € t' 20,
(3.6)
=0, t -t'<O,
and a similar equation holds for GM (x,ty3x",t'). Next, we consider the class
of unlimited shallov shells with middle surfaces of arbitrary quadratic form

vhich by an orthogonal transformation of coordinates may be brought to

**As noted by Friedman (1956), (3.2) and (3.3) contain the two-dimensional
Fourier transform theorem and the Laplace transform theorem, respectively.
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B =% (§,x2 + boxp?) CRoM

where b, and by are the principal curvatures of the middle surface of the
shallow shell. Yor the class (3.7), Marguerre's (1938) formulation for elasto-
static problems of shallow shells in terms of w and an Airy stress function F,
in the absence of surface tractions and the presence of temperature resul-

tants, reads

V372 F + Eh (bpL, + b,Lp) w + Eh av2eN =0,

(3.8a)
D v&2 w - (bgl; + byLs) F + (1-v) D aveaM =0,
where
d2 o2
Ll = 'a'ilg N L2 = &22 s (B'Bb)
and the stress resultants are
J2F
Nii = LgF , Nzp = 1gF, Nip = - Sxadx, (3.9)

By (2.18), (2.19), (3.7), and (3.9) the tangential components of middle
surface displacement to within a rigid body displacement may be written as

X3
vy -f [é—h (LoF = yLiP) + byw + aeN] dx,, (3.10)
0

and an expression for v, given by (3.10) with subscripts 1 and 2 interchanged.
To obtain the thermoelastic Green's function%l? (x,t3x',t"'), we replace F,

W, 9N, and QM in (3.8) by FN,S{SN s Gy» and O, respectively, whence, with

the aid of (3.1), (3.8) yields

N ____ kA(bal; + biL) ¥ i "
Zs - [v8+ k2(boLy fbﬂf;s][ve Ty -1 ] 5(x-x') 8(t-t') ,
<o (3.11)
6
FN = 8 EM v _— 1 a 5()(")(') S(t-t') ,
where
kaazn—hs%"%(l "V2) .

+For a shallow shell with middle surfébé analytic at the origin; (3.?) fe-
presents the first significant term of the series expansion of 2 in the
neighborhood of the origin,
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This result may be interpreted using (3.3) and the spectral representation

+ o
8(xy - xi) = E%klw il xd) g, (3.12)

for the operator L and a similar representation for L, Thus, following the
procedure used to obtain (3.6), we find that

N E__z'KnN(tt) (11 - Ip)

3% BxE :
o (3.13)
FN - E:.Kd z"KﬂN( t=t ) (Il + 12) ,
where
© g -t )
[ :{} Jf JF+ (g2 4+ £2) pK(EE + £8)(t-t.) (3.1

(62 + £8) & 1k(bat,2+ b E3)
l%gl(xl - x1) zigz(xg - x}) dg; de,

are complex conjugate functions., The componentf_/g_‘ of the Green's function
by (3.10), (3.4), and (3.13) is »

YN . K (t-rﬂ)f*”f"“"‘l_,[fh(xl-x;)_ C ielxi]
b =1 ce Vow &1
[(ﬁ + £2)° (68 ~ye2) + bik® (4,2 2B)(bot? & b1gB) 1]
(82%+ £5)* + k® (botf + b1t2%)2

oo KCEE + E2)(e=t") ieo(xs - x3)

(3.15)

dgl d§2 3

and&g (x,t3x',t') 18 given by (3.15) with subscripts 1 and 2 interchanged.

Following the same procedure as before, the Green's functionsﬂlz are

- found to be

&Y. Ofea oo 4y,
oM. (1%2;«: «mM( £-t ! ["' ”f'" 1 l'jzig,.(x1 x])_ -1glx']

. (3.16)
((524_ gz)(b §2+b §2M§ -yt ) - b (§2+ 5213 1]

(&% + £2)* + k3(bat? + bygo?)2

pHGE 4 EB) (et tea(awxd) 40 gy




a similar expression forflg (x,t3x',t"), and

P = (diglgpke leet) (g g, (3.17)

Next, in order to study the integrals I, and I, defined by (3.1k) we intro-

duce polar coordinates through

gy =pcosd, Eo=p sin ¢ ,
(3.18)

X3 - X} =71 cos @, Xp - X =y sin 6,

and then

- R -kp2(t-t') ir -8
[Iﬂ /’\oo @0 + 2x P Kp (t th) Li..xp COB(¢ ) pdodp
) 9
v

p2 + k (bysin2 ¢ + b,cos2 ¢) (3.19)

¢

Expansion of the denominator of (3.19) in Foyrier cosine series ylelds

¢ . 20
[x f°° f e 2 a (4 k,p2) gPR(EE")
I o ® , m —

0 = (
" (3.20a)

irp cos (¢ -6)

£ cos 2md pdedp ,

where

1 x deé
8, (+ kyp2) = ﬂ\/; p? + ik (b, sin20 + b_cos2s),
(3.2pb)

2 '@ cos 2mbdé
on (+ k,p2) = n~/; p2 4 ik (b 8in26 + b cos20) .,

Evaluation of the definite integrals in (3.20b) is carried out in the
Appendix where it 1is found that

1
Niho

ao (i k,p2) =

?

me~1

m ~“m
2y B _+8 - b m-2k-1
W (0% = 550 (E =23 Z g ’
k=1

(3.21a)
formz 1, Ay # Az,
am(:!_-k,pa)ﬂo, form%l,)\lﬂkg,

with the notation

2] -




1
M = (p® &+ 1kb,)2 , Az = (p% £ 1kby)2

N~

(3.21b)
B = (M- Ag)(ha +A2)h .

Recalling [Watson (194k4)] that the Bessel function of first kind may be
represented by the integral

-n 2n
3 (np) = ;T f Jireeos® o onede |
0

and taking ¢, = 6, (3.20a) reduces to

o
-]
\r i:} = QKZ (-1)™ cos Eme an (+ k,p2)
) m=0 ° (3.22)
Kp2(t-t!
PR Jom (rp) pdp

which appears suited to numerical evaluation. At r=0, by (3.20) and
with p!' = p2 | (3.22) becomes

@ “pk(t-t1) g
{ i;} ) “L/; (p'izikb & (p';%kb;ﬁ (3.23)

which is in the forn of a Laplace transform and will be evaluated for several

specific shell geometries of the class (3,7). For an unlimited spherical
she11™ (of radius R)

by = by = - % s (3.24)

and by (3.23) and a known Laplace transform [Erdélyi (1954)] we have at
re=0

I, + Ip = 2x [-Ci(T) cos T - S1(7) sin T +§ sin 7] ,

I, - I, = 2ni [Ci(1) sin t - S1(1) cos T + g-cos ], (3.25)

T = _l;_(_ (t't') s

where Si(t) and Ci(t) are the sine and cosine integrals defined as usual by

&

**rhe unlimited shallow spherical shell is actually an unlimited parabaloid of
revolution which in the neighborhood of the apex may be regarded as equi-
valent to a spherical shell with edge sufficiently far removed from the
shallow region of interest.




T 0
51(7) ,,f stay oo ci(t) = f L8y 4y, (3.26)
o y T y

Also, for the shallow spherical shell, (3.21) and (3.22) result in

00 -Kp'(t-t') ' ' '
I, + Iz = EKN/N £ 2Jn( p') p' dp
0

k
12, >
P+ RE (3.27)
e (fat?
omik [° g KP (t-t') Joledo') dp'
Ip= Ip= R . k2 ’
0 p' + RZ

and the solution is independent of 8, i.e., it is axisymmetric., For an
unlimited shallow circular cylindrical shell* (of radius R' with generators

X, = const.)

1
by =0, bz * " RT (3.28)

and by a known Laplace transform [Erdélyi (1954)], (3.23) is

‘{— i;} = ﬂﬂ+ 17 KO(: i’f‘)’ T = ,g%_' (t't')’ (3-293)

hence at r = 0

I, + I, = n2 [J (7') sin 7' - Yo(t') cos t‘} ,
° (3.29b)
I, - I, =22 [JO(T') cos ' + YO(T') sin r'} ,

where KO‘ JO’ and YO are Bessel functions in the usual notation of Watson

(1944). For an unlimited shallow hyperbolic parabaloidal shell with
by =-b,=b>0, (3.30)
by a known Laplace transform [Erdélyi (1954)] , (3.23) yields

ﬂg
I.l = IZ = -E- [ HO(T'") - YO(T'") ] ,
(3.31)
™ = keb(t-t'),
where By is Struve's function of first order as defined by Watson (19Lk).

*The unlimited shallow circular cylindrical shell is actually an unlimited
parabolic cylindrical panel, which in the neighborhood of the x;- axis
may be regarded as equivalent to a circular cylindrical shell with edge
sufficiently far removed from the shallow region of interest.
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The solution for the unlimited flat plate (b, = by = 0) cannot be obtained as

a limiting case of the foregoing solution for unlimited shallow shells, since

for by = by = 0, by (3.21)

I!—'
v
O

a. = am = O, m (3.32)

0

©
)

and the integral in (3.22) is divergent. This result is due to the fact
that the spectral representation (3.2) for ¥2 is not valid for solutions of
the plate equations. For an unlimited plate Green's functions can be obtained
with the aid of the extended definition of ¥2 [see (4.20)], but the Green's
function for the bending solution will contain a lnr term and an arbitrary °
function of time. In this respect the Green's function for an unlimited flat
plate differs from those for unlimited shallow shells where the displacements
vanish at r = » and no arbitrary function of time is present. Thus, a com-
parison between quasi-static Green's functions for unlimited plates and
shallow shells is not possible, and the Green's function for the flat plate
will not be derived here. TFor a finite plate, however, no such difficulties
arise.

The time variation of&{% (x,t; x',t')} at the source point Xy = %&
(r = 0) is shown in Fig. 1 for the spherical, cylindrical, and hyperbolic
parabaloidal shallov shells., These results are obtained by numerical evalu-

ation of (3.16), (3.25), (3.29), and (3.31), for the values
h 1
_R. = %' = hb = 3—0 . Vv = 0,3 s H=20 (5'33)

where H = O has been chosen since H/hk << 1 in most problems of practical

interest. For qualitative comparison with these quasi-static Green's functions,

since & dynamic Green's function for shells is not available, Fig. 1 shows the
corresponding time variation of the dynamic Green's functionéﬁg (x,t3x't")

at r = 0 for an unlimited flat plate as obtained by Nordgren and Naghdi

(1962) which may be written as

Eﬁ{%]n -0 = L%iQ)gﬁ z-KnM(t-t') [ Ei Kﬂu(t't') - (t-t')} ,

3 (3.3L)
for ¢ (B 1, Eit = ci(ir) - - si(1r).

As seen in Fig. 1, the time variation for the three shells is similar and

possesses a logaritimic singularity at t = t' and decays exponentially as

2L




t - t' 50, It should be noted that the quasi-static Green's functions fail

to meet & zero initlal condition, 1{i.e.,

| 1im ghg (x,t3x',t') #0, (3.35)
‘ t-t' - O+

for general values+ of x and x', However, in the actual solution formula
(2.53) for w,ﬁg (x,t3x',t") 8M(x',t') is integrated with respect to t' and
if GM (x',t') is a plecewise continuous function of t' with 9M (x',t') =0
for t' <0, then w will be continuous in t and vanish at £t = 0, On the other
hand, if 0 (x',t') is an Impulse (d-function), then the singularity in

&3 (x,t;x' t ) at t = t' gives an unrealistic result for w, indicating that
the dynamic solution should be employed. In the dynamic solution for the flat
plate,&}g (x,t3%x,t') =0 at t = t' as desired. Mathematically, it is clear
that zero initial conditions cannot be imposed on the quasi-static Green's
function since time operators (inertia terms) are not present in the elasto-
static equations.

It should be noted that.[’;‘; (x,t3x',t") given by (3.1%) may differ con-
siderably from&M (%, t3x',t'), since by (2.2), n, << Ty when H/hk << 1.
Thus,fzq will decay more slowly thanﬁa as t - t' — o and for the spherical
and cylindrical shallow shells, by (3.13), (3.25), and (3.29b), a damped
oscillatory time varlation of significant amplitude may be expected, For the
hyperbolic parabaloidal shell (3.30), by (3.13) and (3.31),32 (x,t3x',t") =0

at x = x',

3.2 A Class of Rectangular Shallow Shells. Let us consider the class of shallow
shells (3.7) now with O = X, S 8, and boundary conditions (2.L) and (2.32), i.e.,

! W=V2=o, Mllgﬂ'ﬁ’ NllaNﬁ’ on X3= 0,8, ,

€
]
1]
o

Maz = HY , Npo = NX, onxz=o,az, (3.36)

0 = O&(- 6. = Gﬁ s on x = O,aa . (3.37)

y (2.19) and (3.9), the homogeneous form of (5.36) is met if

+A similar situation occurs in the theory of elasticity where, e.g., the
thermoelastic Green's functions for the entire space according to quasi-
static theory as given by Parkus (19'9) do not vanish as t - t' 5 0.
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w=aeuF- -arl'z =0, onx1=0,al,
, (3.38)
w=g—5=F=¥-2=O,onx2=O,ag,
6 = GM =0 N xa = O,aa. (3'39)

2
In view of (3.38) the domain of the operators Iu = %;;2 appearing in (2.1)

and (3.8) may be taken as the set of all integrable square functions which
vanish at ®, = o’ﬁz and have piecewise continuous and integrahle square
second derivatives with respect to x . Since by (3.328) LBN vanishes at
x = 0,8

[e4 a
(with the domain just specified) acting on LBN provided that N has piece-

, the operators in (3.8) of the form HaLBN be interpreted as L,

wise continuous and integrable square fourth partial derivatives, Then,
since L1 and L, commute, we miy again follow the method established by Fried-
man (1956) and regard L and g% as constants in %?lving for the Green's
function. The result is interpreted using for 3t the spectral representation

(3.2) and for L; and L, the spectral representations

o0
1
B(x; -xi)=§—l'§ sin-ﬂnz—fl sin% ,
m=1
- (3.40)
1
B(xg-ws) =& ) st M2 gup MEE

n

respectively, which are given by Friedman (1956, p. 249). In this manner,
(3.1) yields the temperature Green's function

)
GN(x,t;x',t') = 82:2 Z-KnN(t-t’) §j exp [-K(m'2+ n'2)(t-t")
nIo (3.10)
sin m'x; sinm'x{ sin n'xy, sin nfx} ,
where
m' = 2L n' =22 (3.42)

as

and a corresponding expression for GM (x,t3x',t') follows upon replacing
Ny bY my in (3.41). A similar technique applied to (3.11) results in




- -t
3“ - kK ﬂvKnN(t t ) (I]'_ - Ié) ,

3 7 ajani
: (3.13)
N _ 2Bhka ,-knn(t-t') ‘4T
F = ———8182 3 (Il + 12) ’
where
{é} y (m'®+ n'?) expj."-K(m'2+n'2)(t-t')}
me=1 L(m'2+ n'2)2 4 ik(bom'3+ bln'z)zj
sinm'x; sinm'x{ sinn'xy sinn'xd .
By (3.10), (3.41), and (3.43) the remaining componentsfjg of Green's
N
'funct:ion&i are
5}‘ g -KnN t-t') 2‘ = (cos m'xy - 1)
aap
n=1
[(E|2+nl2)3 (n|2_vmr2) + b1k2(m12+ n'2)(b2m'2+ b1n'2) (3 hs)

¢ (m'2+ n'2)* + k2(bom'?+ byn'2)
- }-exp {-K(m’a+ n'2)(t-t') sin m'x]{ sin n'x, sin n'x} ,
and a similar expression forfzg (x,t;x",t') which is given by (3.45), with

M and N as well as subscripts 1 and 2 interchanged. By the same procedure

we obtain the Green's functions

& . 204ylka  -kny(t-t!) (14 + 18) ,

aag

. (3. 46a)
33 4(1+v)ka -KTIM t-t') z 1 (cos m'xy~1)
aap mei "
n =

[(mn?_,_ n'2)(b2m12+ b’nn%(nue_vm'2) - b, (m|2+ n12)3
' (m12+ nl2)4 + k2(b2m|2 +b nl2)2

(3.L46b)
- }-exp'{-K(m'2+ n'2)(t-t') sin m'x{ sin n'x, sin n'xs ,
a similar expression forfzg (x,t3x',t'), and
yM :_QM)E_W 'KT}M t-t') (I' - 1), (3.1'_6‘:)

ajagki

where I{ and I} are defined by (3.4k4).
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As an application of the formulas of Section 2 and the Green's functions
Just obtained for a class of rectangular shallow shells, we consider the edge
conditions (%.37) with

*
BN (x,t) = £(x,) , Xo =0, tz0,
= -f(x,) , Xp=a,, tz0, :
=0, ¥1 = 0,a8; , (3.’473)
=0, t<o,
and also take
Hﬁ--uﬁ.QNnggeﬁaeﬁgo, (3.47b)

where f(xl) is a continuous function of integrable square on O = x; $ a, .

By (2.16), (2.5%), and (3.47), we have

eN(x,:) = j;t dt! j;&l {I"é’%cn(x’t;x"t')] Yo

+ [ﬁcn(x,t;x' t')] X, =a, } f(xY) dx},

t a (3.48)
o _¢gN ol g0
Ui(x’t) = f L/:) {[m&i (x,t;2',t )] X, = 0
‘.Bx' y?_(x,t;x',t')} xg =, } f(x')dx}
which with the Green's functions (3.41) to (3.L45) become
- b 1 - exp r-K(m‘E + bn'? ¢ qN)t}
eN (x,t) 8, X 2'. S
:i. m'? + Un + Ny (5.19a)
2n' fm sin m'xy sin 2n' xg N
U (x tl) = XX z‘ 1 - F’:& -K(m'e-l- )-l'n'2+ ||“2t>
m'2°4 kn'? 4 N
n = 1
{(m.'2+ n'2)3(4n'2-ym'2) + bk3(m'2+kn'2)(bom'®+ bybn'2)
(m'2 + 4n'2)* 4+ k2(bom'? + by kn'2)2
(3.490)

1 2n' . .
- = (cosm'xy - 1) fm sin 2n'xo,

a similar expression for Ux(x,t) and
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Uq(x,t) = = ] X 1 - exp{-x (m'2 4 bn'2 4 q )t}

a, m'Z2  In'® 4 Ny
m=1
n=1
2" 1
{(m'2 + 1n'3)* 4+ k% (bam'Z 4 byhn'?) } (3.49¢)
(m'2 4+ In'2) (bom'2 + by1ln'2) 2n'fm sin m'x; sin 2n'x, ,
where
2 a1
fm = ‘a—l f(xl) sin m'xl dxl . (3.50)
0

By (2.57), (3.9), (3.43) &nd (3.L47) the stress resultants are found to be

N s
ey

{Nll(x't)} " 4°" f‘ 1 - exp\r-K(m'e + n'2 4 T]H)t}
ap 4

m

1 mZ2 4+ 4n'2 4 q
N
n 1

(m|2 + )_mIE )3 fm

(3.51)
(m'2 4 Ln'2)% 4+ k2 (bom'2 4+ by Un'2)2
~'2n')3 sin m'xy; sin 2nk;
m'2n' sinm'xy sin 2n'x2}
“m' 4n'2 cos m'x; cos 2n'x, )
and similar expressions for M__ and are easily obtained. From the theory

of Fourier series it may be ggewn in the usual manner [see, e.g., Friedman
(1956), p.271] that 6 (3.49a) converges nonuniformly to the boundary values
(3.47a). To this end we write (3.49a) as

00
1 ' '
9N=ez — fm sinm'xy, sin 2n'x;
=1
hel (3.52)
o0
+ }Z A {myn) sin m'x; sin 2n'xy ,
m=1
n=1

where A (m,n) = 6 (%5) as n » o, Thus, the second series converges uni-

formly and 18 zero at x, = O,ap , while the first series converges to

~

(1 - _fa ) sinm'x; fm = (1 - %EZ) £(x) , 0O<xp< 8z (3.53)
2 2

vhich approaches f(x,) and -f(x;) as x, approaches O and ap, respectively.
In a similar manner the remaining homogemeous boundary conditions (3.36) and
{3,47) may be shown to be satisfied by (3.49) and (3.51) with the series
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converging uniformly in each case. Note, however, that on x, = 0 and
Xz = 83 , Ny; converges nonuniformly to the values -Eh a f(x;) and

Eho£(x;), respectively,

4., IMPROVED THEORY OF SHALLOW SHELLS.
GREEN 'S FUNCTIONS FOR AN UNLIMITED SHALLOW SPHERICAL SHELL.

Basic Equations. Formulation of Elastostatic Problems. We recall from

the note by Naghdi (1956) that the effect of transverse shear deformation
may be included in the theory of shallow shells [in a manner similar to
Reissner's (1945) improved theory of flat plates] by replacing (2.18b) and
(2.21) of the classical theory with

2n (4.1)

a5~ Vorg t Veba o

& = ey & (a W), (k.2)

respectively. The components of Qa reprrsent the changes in slope of the

and

normal to the shell middle surface, and the tracer ¢ = 1 is introduced in
{4.7) to isolate the effect of transverse shear deformation in future mani-
pulations. Also, in some equations it will be possible to let ¢ = O and
obtain the corresponding equation for classical theory.

In the absence of tangential surface tractions (p* = 0), (2.17a)
leads in the usual manner to

8 . & AN W, B (4.3)

where, by the compatability equation associated with (2.18a), together
with (2.19a) and (L4.3), the Alry stress function F must satisfy

2
v372 F + Ene eB”vav BVvw+EhGVe, =0 (L.k)

p PR

just as in classical theory. Introduction of (2.19b), (4.1), (L.2), and
(4.3) into (2.17b,c) results in

Eh 2 on BN
ﬁ%ﬁﬁc (+ By +V w) + € € vavB av)\vn F (4.5)

+p =0,
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Eh - QBN
To(itv)e (Boy ¥V ¥) - D 4 VnVeBs

2 (4.6)

6 =
+DaV M 0,

which contain the effeect of transverse shear deformation. Next, by the two-
dimensional verslon of the Stokes-Helmholtz theorem of vector analysis we

may write

By =V, B+ aane”" VK, (4.7)

and then (4.6) becomes

a2 -
v H - A L (8" +w) - (1 +v) aeﬂ = f, (1.8)
2 10 2 )
v K' - B2 K' = Ty 8
where
£ » 0 ftay
Vol + 8508 W8 = O VE=vg=0, h.9)
9
X = ch?
5{1-\)5
Letting
H=H' + Nf , K= K' + Ag, (L4.10)
by (4.9), equations (L.7) and (4.8) read
5a = val-l + aanem‘ VLK’ (4,11)
a2 -
VH-A 1(H+w) - (1 + v)czf?M =0, (4.12)
VK-8 K=0 (4.13)
which are the same for all shallow shells, and (k4,5) is
2 2
AD(V H +7 w) + é> eﬂ"vavﬁzvxvnp+pao. (h.1%)

Thus, all solutions in the improved theory of shallow shells may be repre-
sented in terms of F, w, H, and K which are governed by (4.4), (L.12), (L.13),
and (4.14). It may be noted that for flat plates (2 = 0), (4.12) and (L.13)

remain unchanged while (L.4) reduces to an equation for F alone and (L.1L)
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reduces to an equation containing H and w. For bending of flat plates the
system (4,12), (4.13), and (L4.14) with 8 = O 1s equivalent to the formulation
by Reissner (1945) which involves a stress function representation for dz.

Green's Functions for an Unlimited Shallow Spherical Shell Under Normal

Traction and Temperature Field. For a shallow spherical shell (of radius R)

referred to rectangular Cartesian coordinates X,

-5
Z= ';‘c;"a RAE ==, (4.15)

the basic equations (4.4) and (4.14) simplify somewhat, while (4.11) and
(4.12) remain unchanged. For an unlimited shallow spherical shell the

solution may be written in the integral form

ot « [T 7 Ty slx) + e g, )
(4.16)
+ wN(x;x') 9N(x')] dxd dxb |,

and similar expressions for F, H, and K, where the threec sets of Green's

functions wp, Fp, Hp, Kp; wM, M HM’ KM; and wN, FN’ HN, KN are solutions
of the basic equations with p = B(x-x'), 9M = 9N = 0 GM = 5(x-x'),

p = 9N = 0; and 9N = B8(x-x'), p = QM = 0, respectively. Thus, all three
sets of Green's functions may be obtained from solution of

2 2 Eh 2 — ,
VY Fo- RN = - EhaGN 5(x-x') , (4.17a)
2 2 1 2 l— o
MY Hy + 7 w.) -RDVFG=-Dps(xx). (4.17b)
2 -1
VH, - AT (Hg +wg) = (1 +y) of 8(x-x") , (4.17c)
oo koo
v G EEE G = * (14.176)

wherels, ] , and 8 are constants taken in turn as p =1, 0. = 6. = O:
M N P ' M N H

=1, p=0,=0; and EN =1, p=06 =0, for each set of Green's

e
M N M
functions.

To solve (14,17) we introduce polar coordinates r and  through

X, - X/ = r cos B, Xz - %t = r sin 6, (4.18)
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a1

and recall that

1
o 1) = 4.
5(x-x") e s(r) , (4.19)
and the definition of the Laplacian may be extended to functions U(r) not

regular at r = O according to

2

r ’

r_)O r 0

where d,/Or indicates differentiation in the ordinary (not symbolic) sense.
With the aid of (L.19) and (4.20), (4.17) may be written as

22 gy 2 5(x) 3 (o, _Eh
[V‘VFG-RVW]-t-r [limr ar(‘G’FG- WG]

G r -0 R
1 2 2
+5—Ql [umr(vF -ﬁw)]+v§(ﬁ[limr§—n§6 (421a)
T G R G T d
r -0 r->0

. 2
+ Eha 37 ] + §i%£l {lim r FG] =0

on N r -0

- 2 2 2 _
()\I(VH+VW)-—]-"VF +§(-1-‘ll.lim§‘-()\l(}l,,+w
G G RD G r Ly 0
- (4.21b)

(4.21c)

(4,214d)

which are satisfied 1f each expression in brackets vanishes, The first
brackets in (4.2la,b,c,d) lead to the general symmetric solution

1 1 r
VU:;%‘(r%;—g)+8—r(£)'limrU+§{_£l 1imr Q;‘l (4.20) **

**The corresponding extended definition of the three-dimensional Laplacian
is derived by Friedman (1959), p. 255.
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o= " B1-3: Inkr + (NE3 -1)[4 (gair)

W, =
+ BaK, (;n)} + (o - 1) {leo (Eor) + 36.1<o(c2r)] ) (4.22a)
H, = B1 + Bp lnkr + Bg I, (tar) + BuK,(E1r)
+ BsI, (to 1) + BgK, (tor) , (4.22p)
K, = ByLe [% (170)%]+ BgKe [ﬁ (-1-‘:9-)%], (%.22¢)
F, = 39 + By, lnkr + RD [Ba gf Io (1) - ' ‘ (h,224)

£ BatE Kol8ar) + 8582 L(£a0) + Bk (20)) 4

where By, B,, . . . B are constants and

(8- 20+ w-T).

2 2 1 (1.23)
¢ _12(l-y kar_e3(49) 12 h
Re L1, 2 >0, k__hg—k“_L’Q-S[l-v R<1-
Recalling that
Er
g R 0 .2
Io(§r)—’rz'—§'r R L e{>0, (h.2k)
then in order that w, and K. have at most a singularity of O(1lnr) as
Y 350 , B3 = Bg = B7 = 0, and without loss in generality, B, = B9 = 0.
Further, since '
lim r Ko(;r) = lim w2 Kc(gr) = O,
r 50 r >0
5 3} . (4.25)
limr <> Ko(fr) = -1, limr -g—i-v Ko(gr) = =~ ¢ ,
r 50 r -0
(4.22) meet (L4.21), provided
B, = L E+Rk4ae +;2(1+v)a§ :
* 7 2r(8T - 5 D N e M| :
-1 P 3 1
Bg +chz_5 + 14 ae:\ 4.26 |
= (- 2 [ ¢ (1 ) (k.26) |
=B, = _IR
Bo=By=0, By =2 .




Thus, the solution (4,22) which determines the Green's functione is

G 2n(t3- ¢3)

2 —

—_ 2

B s 3+ mh B
Fo = ox Inkr + = 2 Tr) [ PR + Eh aGN (4.27)

- ? 4 = 2 )
v = & 1 [§+Rka6N+§2(1 +v) aGM]Ko(élr)

2

+ RD;; (1+v) a’ém] Ko(gy1r) - m [ER + Eh 0B + Rngf(1+v)aeu:‘xé(g2r),

H, = m [(% + RK40[5N + t8 (1+v) afy) Ko (E;1)
- ( B+ rCoBy + ¢ (14) oF,) Kc(gzr)] :

To obtain corresponding results for the classical theory of shallow shells we
neglect the effect of transverse shear deformation by setting ¢ = O, in which
case for UM = G‘} = 0 (4,27) reduces to the solution given by Reissner (19L6)
for an unlimited shallow spherical shell under concentrated load, and for

P =0 (L4.27) reduces to the solutions given by Flligge and Conrad (1956) for
concentrated temperature resultants,

With the aid of (4.25), in the neighborhood of r = 0 (L.27) is

5 2 4
wG=‘81_ﬂ (§+Rk4a-§N)[(l->\.k)r‘?lnkr-hlnkr+...:l
- 2 4 2
_i%)_a QM [lnkr--}:)\.'kr lnkr+...] s
Rk = [ 2 Eh of
FG=- & p(r 1n kr+...] -.._Q;IL [ln kr (4.28)

2
2 2 — e
+ % Ak r 1o kr + ] + g——)——lwaﬂo‘“—k GN [r 1In kr + -J s

B R I (g g
H, 8ﬂD(D+Rk09M)Lrlnkr+... + GM .lnkr-!-...

which differs from the classical theory (¢ = A = 0). 1In particular, for

M
while in the classical theory wp - O as r - 0. In this connection we

the case 0, = -é-N = 0, according to the improved theory wp 2o as r »0,

recall that in most other derivations of singular solutions for concentrated
loads in the classical theory of plates and shells, the requirement wp -0

as r - 0 is imposed a priori; however; no such requirement 1is needed in the
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foregoing treatment, Indeed, the requirement Vp O as ¥ » 0 for the
improved theory would lead to an incorrect result for the Greem's function
as seen from (4.28), It may be recalled that Green's functions also are
unbounded at the source point in the three-dimensional theory of elasticity.

To see that the ; term in (4.27) represents a concentrated normal force
at r = 0, by equilibrium considerations the total resultant normal force

Vg.on a vanishingly small circular region with center at r = 0 is

2n

vé = - 1w f (QG + L8 Yy rd 8, (4.29)

N r R r
r -0 0

By (4.2), (4.3), and (4,11) in polar coordinates with polar symmetry, we have

G_D 3 G _ OFg
=y o Hgtvg), No=LE (4.30)
and by (4.28), (4.29) yilelds
VS =P, (4.31)

as desired.

Green's functions for a flat plate with the effect of transverse shear
deformation included cannot be obtained as a limiting case of (4.27) as
R -+« , Instead, we must return to (k4. 21), let L.oo , and then in the

R
same manner as for the shallow spherical shell we obtain

_ 2 2 W E ry| o (+vae g 4.z
Wy = Bfﬁ [r In+ - (14 1n ¢ )] - Oy In ¢
T 2 r (1+v)a 1y
Bo=-@p Tlng + n Ming (k.32)
Eha 3 xr
= - e} N
Fe 2x N -

When the effect of transverse shear deformation is neglected (¢ = A = 0),
(4.32) reduces to known results for classical plate theory. For the flat
plate the improved and classical theories give different fundamental

singularities only for the Green's function w

P
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5.  APPENDIX:
EVALUATION OF CERTAIN DEFINITE INTEGRALS

Here we shall evaluate the definite integrals (3,20b) by contour integration

*
around the unit circle in the complex Z plane where
B=1r 2 . (5.1)

Thus, on the unit circle C (r = 1)

b b, gt
& - 22 -2+ 2°
sin ¢ = 51 s cos ¢ = S s
m -m
cos 2md = g +2 s dg = 21gde ,
2
and for b; ¥ by (3.20b) becomes
2 2 dg
a (+k = —— =t 2
ol ko) = RE ) fc (2 -p)(8-p71) (5.2)
2 2 (2" + 2™ dg
a, (+k = Y f —— .
m (£ k0 ) T1(NE - N2) A (8 -p) (2 -p-1) ° (5.3)

where A1, Ao, B are defined in (3.21b). Consider

2 2 _ _
SR O I N P I ST L WY 9 :
Bl = ep = INi[Z + [No|Z # 0qke + Rghp (5.4)

where E denotes the complex conjugate of B. We may write A, and Ap in the

polar form

2 2
}‘-1(1 kyp ) = Rlﬂiiwl ) Ao (i k,p ) = Rz ziiwe s
: (5.5)
- % ] '4’1:71’2 ES ?I: 3
whence
leé + xikz = 2 RyRp cos (Y = ¥2)
(5.6)
- % =3 (wl - @2) s g .
Therefore, by (5.4) to (5.6)
MAo +AAp 20, gl s 1, (5.7)

* I'his method is used; e.g., by Churchill (1918).
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where the equality signs apply only when p = O for a special subclass of (3.7).
Excluding for now the case p = 0 , the initegrand in {5.2) has a pole
inside the unit circle only at 8 = £, hence by the residue theorem we have

(4 kyp ) = e (5.8)

aO 7\.1)-2

Similarly, with the aid of the expansion
" \
1 = j-2k 3
Rt ) i LR (59)
j=0k=0

(5.3) becomes

-4 m -m
_ B +8 m ~2k=-1

(5.10)

mz 1, b, # by .

For the special case p = O, since a; (+ k, p?) appears in the integrand cf
(3.2), it is sufficient to take

8y (+ k,0) = lim (+ k,p®) , (5.11)
where, by (5.9) and (5.10) the limit in (5.11) exists for b, # by, For the
spherical shell by, = by, by (3.21b), Az = Ao and (3.20b) yields (5.8) and

ay (+ k,p?) =0, mz 1, (5.12)

Thus we have obtained the results expressed by (3.21a).
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X, = 5& (r = 0) according to quasi-static theory for unlimited, sphericaly
cylindrical, and hyperbolic parabalcidal shallow shells ( R=R' " hb = 36 .

y = 0.3) and for qualitative comparison according to dynamic theory

L
T (%)2 << 1 ) for an infinite flat plate.




References

Bergman, S., and M, Schiffer, 1953, Kernel Functions and Elliptic
Differential Equations in Mathematical Physics (Academic Press,
New York).

Bolotin, V. V,, 1960, "Equations for the Non-stationary Temperature
Fields in Thin Shells in the Prescnce of Sources of Heat,” Appl.
Math. Mech. 2L (Transl, of Prik, Mat. i Mekh.), 515-519.

Churchill, R. V., 1948, Introducticn to Complex Variables and Applica-
tions (John Wiley, New York).

Duhamel, J. M. C., 1838, "Mémoire sur le Calcul des Actions Moléculaires
Developpées par les Changements de Température dans les Corps
Solides,™ Mem. par Div. Sav. a 1'Acad. Roy. des Sci. de 1'Inst. de
France 5, 440-L98.

Erdélyi, A. {Editor), 1954, Tables of Integral Transformatioms, v. 1,
Bateman Manuscript Project (McGraw-Hill, New York).

Fliigge, W., and D. A. Conrad, 1956, 'Singular Solutions in the Theory of
Shallow Shells," Tech. Rept. No. 101, Nonr 225(16), Div. of Engr.
Mech., Stanford University.

FlUgge, W., and D, A. Conrad, 1958, "Thermal Singularities for Cylindrical
Shells." Proc. Third U.S. Natl. Congr. Appl. Mech.

Friedman, B., 1956, Principles and Techniques of Applied Mathematics
(John Wiley, New York).

Goodier, J. N., 1958, "Formulas for Overall Thermoelastic Deformationms,"
Proc. Third U.S. Natl. Congr, Appl. Mech., 2L43-245,

Goodier, J. N., and G. E. Nevill, Jr., 1961, "Applications of a Reciprocal
Theorem on Linear Thermoelasticity," Tech. Rept. No. 128, Nonr 225
(29), piv. of Engr. Mech., Stanford University.

Green, A. E,, and W. Zerna, 195k, Theoretical Elasticity (Oxford Univ.
Press, London).

Marguerre, K., 1935, "Thermo-elastische Plattengleichungen,' Z. ang.
Math. Mech. 15, 369-372,

Marguerre, K., 1938, "Zur Theorie der gekrifmmten platte grosser Formén-
derung,' Proc. Fifth Inter. Congr., Appl. Mech., 93-101,

Naghdi, P. M., 1956, "Note on the Equations of Shallow Elastic Shells,*
Quart, Appl. Math. 1L, 3351-%%3,

Naghdi, P. M., 1960, "On Saint Venant's Principlae: Elastic Shells and
Plates,”™ J. Appl. Mech. 27, Ll7-ke2,

_39_




Lo

Naghdi, P, M., 1962, "Foundations of Elastic Shell Theory," ONR Tech.
Rept. No. 15, University of California, Berkeley, IER Ser. 131,
Issue 15, January 1962; to appear in Progress in Solid Mech.

Nordgren, R. P., and P. M. Naghdi, 1962, "Propagation of Thermcelastic
Waves in an Unlimited Shallow Spherical Shell Under Heating," Proc.
Fourth U. §. Natl. Congr. Appl. Mech. (to appear).

Parkus, H., 1959, Instatlonare WHrmespannungen (Springer-Verlag, Vienna).

Rabotnov, Yu. N,, 1946, "Bending of a Cylindrical Shell by a Concentrated
Load (in Russian), C. R. (Dokl.) Akad. Nauk SSSR (N. 5.) 52, 229-301.

Reissner, E., 1941, "4 New Derivation of the Equations for the Deformation
of Elastic Shells," Am. J. Math. 63, 177-18k,

Reissner, E., 1945, "The Effect of Transverse Shear Deformation on the
Bending of Elastic Plates,' J. Appl. Mech., Trans. ASME 67, A69-ATO.

Relssner, E., 1946, "Stresses and Displacements of Shallow Spherical
Shells II," J. Math. Phys. 25, =2(9-300,

Watson, G, N., 19Lk, A Treatise on the Theory of Bessel Functions
(Cambridge Univ. Press, London),




Qi

DISTRIBUTION LIST

Contract Nonr=222{03), Project WR-O64-436

Chiet of Maval Masaasch
Depavtment of the Wuvy
Washington 25, D.C,

Atens Cods 439 {2)

Coamanding Officer

0ffice of Naval Rasearch
Branch Office

195 Gusmer Sfrest

3 10, Massachusetts (1)

Commanding Officer

Office of Naval Resesrch
Aranch Offica

John Crerar Library Building
86 £. Randolph Strast

Chicage 11, Illinois (1)

Commanding Offficer

Office of Naval Research
Branch Office

345 Brosdway

New York 13, New York (3)

Commanding Officer

Office of Naval Research
Branch 0ffice

1030 K, Oraen Straet
Pasadena, California (1)

Commiinding Officar

Office of Naval Research
Branch Office

100 Geary Strast

San Francisco, Californta (1)

Commanding Officar

Office of Navsl Research
Branch Offica

Navy #1060, Flest F,0,

Mew York, Mew York (o8)

Divector
Raval Ressarch Laboratory
Washington 25, D.C.

Ateng Tech, Info, Oificer (6
Coda 6200 1
Coda 6205 1
Code 6250 1
Code 6260 1

Armed Bervices Tachn’cal Info, Agency
Arlington Hall Beation
Arlington 12, Virginta (%)

Offica of Technical Bsrvicas
Department of Commarce
Nashington 24, 0.0, (1)

Director of Defense

Research and Enginasring

The Pantagon

Washington 25, D,C.

Attas Technical Library (1)

Chief

Armad Yorces Bpacial Weapons Project

The VYantagon

Washington 25, D.C,

Attas Tech. Info. Diviaion (2
Weapons Refscts Div, (1
Spadtal Fiid Projecta{l
Blass and Bhook Br, (1

Office of the Bacretary of the Army
Tha Pentagon

Washington 25, D.C,

Attng Army Lidrazy (1)

Chief of Btaff
Deparimsnt of the Aray
Washington 25, N.C,

Attar bavalommsat Br. (R and D Div,)

Rassarch Br. (R and D Div,)

Spec. Weapons Br. (B and D Div,

0ffice of the Chief of Enginesrs

Department of the Army

Washington 25, D.C.

Attng ENG=EL Lib, Br.idm,Ber,Div
EMG-WD Plan.Div,Civ.Wks.
ENG~EB Port Const.Br.,

Eng,Div,Kil,Conat,
EWG-EA Struc.Br.Bng,Div.,
MHil.Const,

ENG-ED Bpec,Rngr,Bx,,Eng,
R and D Div,

Commanding Officer
Enginear Research Devel, Labk,
Fort Balvoir, Virginta

0ffice of the Chisf of Ordnance
Dapartment of the Army
Washington 25, D.C,

Attui Res, and Nats.By, (Ovd.R and D Div,) (1)

Office of the Chief Bignal Officer
Department of the Avmy = =
Washington £5, D.C,

Attn: Engr, and Tech. Div,

Commanding Officer
WHatertown Avssnal
Watsrtown, Massashusetts
Attai Laborstory Division

Commanding Officsr

¥rankford Arssnal

Srideasburg Statisn
Philadelphia 37, Pannaylvania
Attni Lsberatory Division

Office of Ordnance Repsarch
2127 Myrtle Dixive

Duks Station

Durham, North Caroline
Attny Div, of Engy, fof,

Commanding Officer

Squier Signal Laboratory

Yort Mormouth, New Jersay
Attn: Components and Materials

Ghief of Haval Operation
Dapartwent of tha Navy
Hashington 25, D,C,
Attat op 91

Chisf, Bureau of Ships
Department of the Mavy
Washington 25, D,C.
Attas Code 312

Code W25

Chief, Bursau at Aeronsutics
Departmant of the Navy
Vashington 2%, D.G,
Attnt AR-4

AVe3h

AD

AD=2

g~

8

1

ARR-126

i

i
0
(m
u)

(1

(1)

(1)
{1

(v
(v

tY)

0 1O BD ps oo 0 D

YIS eYs




Chief, Bursau of Ordnante
Dapaxtasnt of the Navy
Washington 25, D,0.
Attny  Ad}

Rel

Ral

Rafls

Rell

Ren

REY

Special Projects Office
Buraau of Ordnance
Departuent of tha Navy
Washington 25, D, G,

Attrs Missile Branch {2)

3= 30 b g 3t gt g

Chief, Bureau of Yards, Docks
Department of tha Navy
Washington 25, 0,0,
Attng Code D202

Code D-202,3

Code D220

Code D-222

Code D~410C

Code D=4iO

Code D-500

Commanding Officer and Director
David Taylor Model Basin
Washington 7, D.C.
Attn: Cods 1O

Code 600

Cods TOO

Code 720

Code TR5

Code 731

Code TiO

Commandar

1.8, Naval Ordnance Lad,

White Oak, Maryland

Attas Technicsl Library (et
Techaical Evaluation (1)

0t gt 9t s ot gt gt

PO P ot ot ot s s

Diractor

Matsrials Laborstory

New York Maval Shipyard
Brocklyn 1, Wew York (1)

Commandirg Officer and Diractor
U.8, Raval Blactronics Labaxatory
8an Dlego %2, California (1)

Officer-in-Charge

Naval Civil Eaglnearing Research
£nd Evaluation Laboratory

U.8. Naval Comst, Battl, Center
Yort Husnema, Caxlffornta (2)

Divector

Navsl Air Experiment Station

Naval Air Hateriel Center

Kaval Base

Mhiladelphia 12, Pannsylvania

Attn; Materials Labovatory 2[;
Struotures Leboratory 1

Officar~in~Charge

Undervater Ruplusion Research
Norfolk Raval Shipyard

Portmoutn, Virginia

Attat Dr, A, H, Keil (2)

Cowmander
U.8, Maval Praving OGround
Dahlgren, Virginis (1)

fupsrintendent
Haval Gun Factory
Washingeon 25, D,C, (1

Commsnder

Haval Ordnance Test Station

China Lake, Califorafs

Attns Physics Division [1;
Mechaniocs Bransh

Commanding Offioer

Naval Ordnance Tast Spattion
Undexvater Ordnance Division
3202 ®. Foothill Alvd,

Pasadana 8,California (1)

Commanding Officer and Director
U,8, Naval Xngin, ¥xp. Statiom
Annapolis, Maryland (1)

Supsrintandent
U.8. Waval Postgraduate School
Wonteray, California (1)

Commandant

¥arine Coxrps fichools

flaantico, Virginia

Attas Director, Marina Corps,
Development Center (1)

Commandex

Alr Material Command
Hright-Patterson AFB

Dayton, Ohio

Attns Chisf, Appl.Mach,Oroup (1)

Diractor of Intelligence
Headquarters U.8, Air Foxce
Washington 25, D,C,

Attng 2.V, Branch (Air Tav.Div.) (1)

Commander

Alx Yorce 0ffice of Scient, Ras,
Waghington 25, D.C,

Attn: Machanics Division (L

U.8. Atomic Enargy Cosmission
Washington 25, D,C,
Attni Dirsctor of Rasasrch (%)

Director

National Bureau of Standayds

Washington 2%, D,C,

Attnt Div, of Machanias 1
Engin, Mech, Ssction 1
Alrcraft Structures 1

Commandant

U,.8, Comst Guaxd

1300 ¥ Btreat, N.W,

Washington 2%, D.C.

Attn; Chief, Testing and
Davelopment Division (1)

U.8, Maritima Administration

General Adninktration Offfice

Wil O Btreet, N.W.

Washingten 28, D.C,

Attns Chief, Division of
Prelininary Design (1)

National Aeronautics and

Spaca Admintlatintion

1512 B Btreet, N.W,

Washington 25, 0.C,

Attnt Loads and Structures ()

Director, WABA

Langlsy Research Canter

Langley Yisld, virginia

Attni Structuras Division ()

Director
FYorast Produots Laboratoxy
Kadison, Wisconsin (1)

Yederal Aviation Agenoy

Departmant of Commarce

Washington 25, D.O,

Attni Ohief, Adroraft Rngr, (1)
Chiss, Adrfvame and Equip, (1)

National Beiences Foundation
1520 1 Strant, N.Y,

Washingtsn 25, D.0.

Attng Xngr, Sctences Div, {1)

i

Rational Academy of Saience

2101 Conatitutiom Avanus

Washington 2%, B,¢,

Attns Teon.Direot,Cotam,on
Ships' Btrus.Deatgn (1)

Profasuor Lynn £, Basdls
Frits Enginesring Laboratorxy

. Lehigh Univeratty

Bathelebam, Pennsyivaata (1)

Prof, R. L, Bisplinghoft

Dept. of Aeronautical Engr.
Hassschusetts Insg, of Technology
Cambridge 39, Massachusotts (1)

Prof, B, H, Bletch

Dept, Civil Enginsering
Colusbie University

New York 27, Maw York (1)

Prof, B, 4, Doley

Dape. Civil Engineering
Colunbia University

New Yotk 27, Naw York {1)

Dr, John ¥, Brahts

Hanagar, Enginnering Resssroh
Stanford Researbh Inatitute
8outhern California Labs.

850 Misaton Btreet

Bouth Pasadena, californis (1)

Prof, B. Budiansky

Dapt. Machanical Enginssring
8chool of Applied Sciences
Harvard University

Cambridge 39, Masaachusstts

Professor G, P, Carrler

Plerce Hall

Harvard University

Cambridge 35, Massachusatts (1)
Profassor G, ¥, Oarrier '
Tlerce Hall

Harvard University

Cambriige 5, Massachusstts (1)

Profeasoxr Herbert Derestewiis
Dept. Civil Kugineering
Colunhia Univaraity

632 W. 125th Street

Mow York 27, New York (1)

Prof, Walter T, Danials

School of Ragr, and Architesturs
Hovard OUniversity

Uashington 1, D.C, (1)

Professor D, C, Druoker
Division of Enginesring

Brown University '
Providence 12, Rbode Island (1)

Professor J, Kricksen

Dept, Mechanics

Johns Hopkins Unty staity
Baltimors 18, Haryland (1)

Profassor A, G, Rringen

Dept, Aeronautical Knginearing
Purdus Univarstity .
Lafayetta, Indiana (1)

Profassor W. Plugge
Dapt, Kechanioal Knginssping
8tanford University
ftanford, California (1)

Nr, Martin Goland, Presideng '
Souttwest Ressarch Instiguts
8500 Culabra Moad :
8an Antonto 6, Texas (1

Profassor J, N, Coodter '
Depk, Mechantieal Enginesring

BERERES, BtRSES. (1)




|

Profassor L, K, Goodman

Englusering Experiment Station
University of Minnasota
Kinneapolis, Minnesota (1)

Professor M, Retenyi

The Technological Inatitute
Northwestern University

Evanston, Illinois (1)

Professor P, G, Hodge

Dapt, Mechanics .
1ilinois Inst. of Technology
Ghicago 16, Illinois (1)

Professor N, J. Woff

Div, Aeronsutical Enginearing
Stanford Univarsity Lo
Stanford, Califorais = (L)

Professor W, . Boppman, II
Departmant of Mechanics
Renaselaer Polytechnic Instituts
Troy, New York (

Professor Bruss G, Johnston
Univarsity of Michigan
Ann Arbor, Michigan (1)

Profassor J, Kaapner

Dapt. Asronautical Engr, and
Applisd Machanics

Polytachnic Institute of Brookiyn
333 Jay BStrast

Brooklyn 1, New York (1)

Profassor R, L, Langhaar

Dapt, Theoretical and Applied Mech,
University of Illinods

Urbana, Iilinols (1)

Professor B, J, Latan, Director
Enginearing Expariment Station
University of Minnasota
Minneapolis 1k, Minnesota (1)

Professor B, X, Les

Div, of Applied Mathematics

Brown University

Providence 12, Rhode Island (1)

Profaasor George H, Les

Dirsotor of Resasrch

Rensselaer Pulytachnic Instituts
Tgoy, New York (1)

Dr. K, Wank
0ffice of Special Asaistant for
Belence and Tschnology

. The Whits House

Washington 25, D,C,

Mr. 8. Levy

Ganaral Rlsctric Ressayoh Labd,
3198 Chestnut Btreat

Philadelphia, Pannsylvania (1)

He, R, H, Koopmann, Sacratary
Walding Research Council for
. the Enginssring Poundation

"89 W, 93th Strest

Mew York 18, Maw York (2)

Profasscy Paul Lichar

Applied Mechanics

Oniversity of Califoranis

Berkelsy h, California (1)

Profasesr Jossph Marin, Nead

n-;:. Sngineering Mechanics
Oollege of Bugr, and Avehitecture
Pannsylvania Stats University
Univeraity Park, Rennsylvantia (})

Professc? P. M. Naghdi
Applied Mackanice
University of California

Sarkaley L, Californis (1)

Frofassor William A, Nash Frofassor J, R, Cermek

Dapt, Enginsering Maschanics Dspt. Givil Enginesring
Univarsity of Plérida . Coiorado State University
Gatnesville, Plorids (1) Yore colltns, Colorado (1)
rrofaasor N, M, Neweark, Eead Pyofegsar W, J, Nall

Dept, Civil Enginesring Dept, Civil Engineering
University of Illinodis University of Illdnots

Urbane, Illinots (1) Urbana, Tllicots . (1) -
Profassor B, Orowan . Irofesscr R, P, Marrington

Dept, Mechanical Enginsering Dept. Asronautical Enginssring
Mansachusetts Inst. of Teohnology Untversity of Cincinasti

Cambridge 35, Masexchusetts (1) gincinnati g1, Ohfo. (1)
Hir * g
Professor Aris Fhillips . Comsander &+
Dept. Civil Engtnesring ® WADD
15 Prospect Street Wright-Patterson AYE, Ohtio

Yals Univareity Attn: WWRO

New Haven, Connscticut (1) WWRMDC 1
WHEMDD 1

Profassor W, Prager .

Div. Applied Mathemutica Profassor B, J. Brunelle, Jr,

Brown University Dapt. Asronsutical Enginesring

Providence 12, Rboda Inland (1) Frinceton Universty
Princeton, Mew Jarsey (1)

Professor R, Raiss

Institute of Mathematical Boi, Ciwmanding Officer

Nev York university WEORY

25 Waverly Place ﬁmnd Atr :::c;.::u
UeTrqus, 80
Nev York 3, New York (1)“““ 0010 'ﬂ W

Profassor Bernard W, Shaffey
Dept, Machanical Enginsaring;

New York University

Hew York 53, New Yori (1)

Professor E. Reissnar

Dept, Mathsmatice

Maasachusatts 1nst, of Technolog
Cambridge %), Massachusetts (1

Profassor M, A, Sadowsky

Dapt., Mschanica

Renssslaer Polytachnic Inatitu
Troy, New York t;)

Professor J, Stallmsyer
Univarsity of Illinois
Dapartnent of Civil Raginesy
Urbana, lllinois uzl)

Professor Rli Stexnberg

Dapt, Applisd Mathesatics

Brown University

Providancs 12, Rhode Island (1)

Professcr T, Y, Thomas

Graduata Inst, for Mathematics
and Hochanlos

Indiana University

Bloomington, Indisna (1)

Profassox A, 8. Velastos

Dapt. Civil Enginsering
Univereity of Illinols

Urbana, Iliinois )

Professor Dana Young
Yale University ' :
Wew Have, Connecticut 1y -

Pr. D, O, Brush .
ftructursa Dept, %313 :
lLockhasd Al{roraft Dorpovation
Wisedle Systems Divisian

fluanyvale, California (1)
Professor John Dubery ch
b Museum Drive :
Naw Port Mews, Virginia (¢$)]

Frofessor J, k.M. Radak

Dapt. Aercnsutical Ruginssring
and Applisd Mechunies -

333 Jay Ntreet .

Brooklyn 1, New Yogk ()

Cosmandey

ortamouth Naval Shi
ortsmouth, Naw lnp:‘m

339

Q)




